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Abstract: Standard noninvasive methods for detecting renal allograft rejection and injury have poor
sensitivity and specificity. Plasma donor-derived cell-free DNA (dd-cfDNA) has been reported to
accurately detect allograft rejection and injury in transplant recipients and shown to discriminate
rejection from stable organ function in kidney transplant recipients. This study used a novel single
nucleotide polymorphism (SNP)-based massively multiplexed PCR (mmPCR) methodology to
measure dd-cfDNA in various types of renal transplant recipients for the detection of allograft
rejection/injury without prior knowledge of donor genotypes. A total of 300 plasma samples
(217 biopsy-matched: 38 with active rejection (AR), 72 borderline rejection (BL), 82 with stable
allografts (STA), and 25 with other injury (OI)) were collected from 193 unique renal transplant
patients; dd- cfDNA was processed by mmPCR targeting 13,392 SNPs. Median dd-cfDNA was
significantly higher in samples with biopsy-proven AR (2.3%) versus BL (0.6%), OI (0.7%), and
STA (0.4%) (p < 0.0001 all comparisons). The SNP-based dd-cfDNA assay discriminated active from
non-rejection status with an area under the curve (AUC) of 0.87, 88.7% sensitivity (95% CI, 77.7–99.8%)
and 72.6% specificity (95% CI, 65.4–79.8%) at a prespecified cutoff (>1% dd-cfDNA). Of 13 patients
with AR findings at a routine protocol biopsy six-months post transplantation, 12 (92%) were detected
positive by dd-cfDNA. This SNP-based dd-cfDNA assay detected allograft rejection with superior
performance compared with the current standard of care. These data support the feasibility of using
this assay to detect disease prior to renal failure and optimize patient management in the case of
allograft injury.
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1. Introduction

Precision medicine and personalized tailoring of immunosuppressive drug regimens can improve
the current state of organ transplant management [1]. Transplantation injuries may be delayed in
detection, and therefore treated ineffectively, because diagnosis can be difficult and biopsy, an invasive
and potentially morbid procedure, may be inconclusive. Though advances in immunosuppressive
drugs, organ procurement methods, and human leukocyte antigen-typing have lowered the number
of clinical- and biopsy-confirmed rejection episodes, sub-clinical rejection of kidney grafts remains
a significant risk [2,3]. Kidney transplant management is particularly challenging owing to the lack
of sensitivity and specificity of the serum creatinine assay, which, in addition to the late detection of
transplant injuries, makes immunosuppression dosage and adjustment far from personalized [4,5].
Therefore, rapid and non-invasive detection and prediction of allograft injury/rejection holds promise
for improving the post-transplantation management of patients who have received kidney allografts.

Diagnosis of renal transplant rejection is generally dependent on an increase in serum creatinine
levels or its algorithmic derivative, estimated glomerular filtration rate (eGFR), which indicates altered
renal filtration functioning. Methods of estimating kidney rejection in allograft recipients based on
serum creatinine or eGFR, however, lack sufficient accuracy. Since there are many causes of the baseline
drift in altered renal filtering in these patients, biopsy is required for definitive diagnosis. However,
biopsies are invasive and costly procedures, which limit their use in clinical practice. Furthermore,
biopsy results are often plagued by expert reader variance and can lead to delayed diagnosis of active
rejection, after which irreversible organ damage may have occurred [6,7]. There is a current unmet need
for a rapid, accurate, and noninvasive approach to detecting allograft rejection and/or injury—one
which may require integration of the current “gold” standard morphological assessments with modern
molecular diagnostic tools [8].

Donor-derived cell-free DNA (dd-cfDNA) detected in the blood of transplant recipients has been
reported as a noninvasive marker to diagnose allograft injury/rejection [9–12], and holds promise for
producing faster and more quantitative results compared with current diagnostic options. Recently,
it was demonstrated that plasma dd-cfDNA fraction, typically between 0.3% and 1.2% in stable
patients [13], can discriminate active rejection status from stable organ function in kidney transplant
recipients [14]. Previously we validated the clinical application of a targeted, single nucleotide
polymorphism (SNP)-based cell-free assay targeting greater than 10,000 loci as a successful screening
tool for the detection of fetal chromosomal abnormalities [15–17] and show here that a similar approach
targeting 13,392 SNPs can be used to evaluate differences in donor cfDNA burden in different transplant
rejection injuries over time. This study uses a novel SNP-based mmPCR-next generation sequencing
(NGS) methodology to measure dd-cfDNA in renal transplant recipients for the detection of allograft
rejection/injury without prior knowledge of donor genotypes.

2. Materials and Methods

2.1. Study Design

This was a retrospective analysis of blood samples from kidney transplant recipients who had
transplant surgeries at the University of California at San Francisco (USCF) Medical Center. The study
was approved by the institutional review board at the UCSF Medical Center. All patients provided
written informed consent to participate in the research, in full adherence to the Declaration of Helsinki.
The clinical and research activities being reported are consistent with the Principles of the Declaration
of Istanbul as outlined in the Declaration of Istanbul on Organ Trafficking and Transplant Tourism.

2.2. Study Population and Samples

Male and female adult or young-adult patients received a kidney from related or unrelated living
donors, or unrelated deceased donors. Plasma samples were obtained from an existing biorepository;
time points of patient blood draw following transplantation surgery were either at the time of an
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allograft biopsy or at various pre-specified time intervals based on lab protocols. Typically, samples
were biopsy-matched and had blood drawn at the time of clinical dysfunction and biopsy or at the
time of protocol biopsy (at which time most patients did not have clinical dysfunction). In addition,
some patients had serial post transplantation blood drawn as part of routine Internal Review Board
approved bio-sampling studies. The selection of study samples was based on (a) adequate plasma
being available, and (b) if the sample was associated with biopsy information. Among the full 300
sample cohort, 72.3% were drawn on the day of biopsy. Patients without biopsy-matched samples
were excluded from the primary analyses.

2.3. Biopsy Samples

All kidney biopsies were analyzed in a blinded manner by a UCSF pathologist and were graded
by the 2017 Banff classification [18] for active rejection (AR); intragraft C4d stains were performed [19]
to assess for acute humoral rejection [20]. Biopsies were not done in cases of active urinary tract
infection (UTI) or other infections. Transplant “injury” was defined as a >20% increase in serum
creatinine from its previous steady-state baseline value and an associated biopsy that was classified
as either active rejection (AR), borderline rejection (BL), or other injury (OI) (e.g., drug toxicity, viral
infection). Active rejection was defined, at minimum, by the following criteria: (1) T-cell-mediated
rejection (TCMR) consisting of either a tubulitis (t) score >2 accompanied by an interstitial inflammation
(i) score >2 or vascular changes (v) score >0; (2) C4d positive antibody-mediated rejection (ABMR)
consisting of positive donor specific antibodies (DSA) with a glomerulitis (g) score >0/or peritubular
capillaritis score (ptc) >0 or v > 0 with unexplained acute tubular necrosis/thrombotic micro angiopathy
(ATN/TMA) with C4d = 2; or (3) C4d negative ABMR consisting of positive DSA with unexplained
ATN/TMA with g + ptc ≥2 and C4d is either 0 or 1. Borderline change (BL) was defined by
t1 + i0, or t1 + i1, or t2 + i0 without explained cause (e.g., polyomavirus-associated nephropathy
(PVAN)/infectious cause/ATN). Other criteria used for BL changes were g > 0 and/or ptc > 0, or v > 0
without DSA, or C4d or positive DSA, or positive C4d without nonzero g or ptc scores. Normal (STA)
allografts were defined by an absence of significant injury pathology as defined by Banff schema.

2.4. dd-cfDNA Measurement in Blood Samples

Cell-free DNA was extracted from plasma samples using the QIAamp Circulating Nucleic Acid
Kit (Qiagen) and quantified on the LabChip NGS 5k kit (Perkin Elmer, Waltham, MA, USA) following
manufacturer’s instructions. Cell-free DNA was input into library preparation using the Natera Library
Prep kit as previously described [21], with a modification of 18 cycles of library amplification to plateau
the libraries. Purified libraries were quantified using LabChip NGS 5k as previously described [21].
Target enrichment was accomplished using massively multiplexed-PCR (mmPCR) using a modified
version of a previously described method [22], with 13,392 single nucleotide polymorphisms (SNPs)
targeted. Amplicons were then sequenced on an Illumina HiSeq 2500 Rapid Run, 50 cycles single end,
with 10–11 million reads per sample.

2.5. Statistical Analyses of dd-cfDNA and eGFR

In each sample, dd-cfDNA was measured and correlated with rejection status, and results were
compared with eGFR. Where applicable, all statistical tests were two sided. Significance was set at
p < 0.05. Because the distribution of dd-cfDNA in patients was severely skewed among the groups,
data were analyzed using a Kruskal–Wallis rank sum test followed by Dunn multiple comparison
tests with Holm correction [23,24]. eGFR (serum creatinine in mg/dL) was calculated as described
previously for adult [25] and pediatric patients [26]. Briefly, eGFR = 186 × Serum Creatinine−1.154 ×
Age−0.203 × (1.210 if Black) × (0.742 if Female).

To evaluate the performance of dd-cfDNA and eGFR (mL/min/1.73m2) as rejection markers,
samples were separated into an AR group and a non-rejection group (BL + STA + OI). Using this
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categorization, the following predetermined cut-offs were used to classify a sample as AR: >1% for
dd-cfDNA [14] and <60.0 for eGFR [27].

To calculate the performance parameters of each marker (sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and area under the curve (AUC)), a bootstrap method
was used to account for repeated measurements within a patient [28]. Briefly, at each bootstrap
step, a single sample was selected from each patient; by assuming independence among patients,
the performance parameters and their standard errors were calculated. This was repeated 10,000
times; final confidence intervals were calculated using the bootstrap mean for the parameter with
the average of the bootstrap standard errors with standard normal quantiles. Standard errors for
sensitivity and specificity were calculated assuming a binomial distribution; for PPV and NPV a normal
approximation was used; and for AUC the DeLong method was used. Performance was calculated for
all samples with a matched biopsy, including the sub-cohort consisting of samples drawn at the same
time as a protocol biopsy.

Differences in dd-cfDNA levels by donor type (living related, living non-related, and deceased
non-related) were also evaluated. Significance was determined using the Kruskal–Wallis rank sum test
as described above. Inter- and intra-variability in dd-cfDNA over time was evaluated using a mixed
effects model with a logarithmic transformation on dd-cfDNA [29]; 95% confidence intervals (CI) for
the intra- and inter-patient standard deviations were calculated using a likelihood profile method.

Post hoc analyses evaluated (a) different dd-cfDNA thresholds to maximize NPV (Table S1) and
(b) combined dd-cfDNA and eGFR to define an empirical rejection zone that may improve the PPV for
AR diagnosis (Figure S1).

All analyses were done using R 3.3.2 using the FSA (for Dunn tests), lme4 (for mixed effect
modeling) and pROC (for AUC calculations) packages.

3. Results

3.1. Patients and Blood Samples

A total of 300 plasma samples were collected from 193 unique renal transplant recipients. Of these,
23 samples from 15 patients did not meet inclusion criteria and were excluded from analyses; this
included samples collected within three days from transplant (15), and samples unable to be sequenced
(8). Of the remaining 277 samples, 217 were biopsy-matched, including 38 collected from patients with
biopsy-proven active rejection (AR), 72 with biopsy-proven borderline rejection (BL), 82 normal, stable
allografts (STA), and 25 with a biopsy that indicated other injury (OI) (Figure 1). Of the 178 unique
patients included in the study, 20% (35) were under 18 years of age; 30% (54) were between 18 and 40
years, and 50% (89) were older than 40 years of age at the time of first blood sample.
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Published data have shown that dd-cfDNA fractions in patients with AR are significantly higher
than patients with non-rejection; however, these data have shown an inability of dd-cfDNA to detect
all types of AR, specifically failing to detect TCMR [14]. In this data set, the performance of the assay
to detect rejection was evaluated for all types of rejection combined (ABMR, TCMR), based on the
assumption that elevated dd-cfDNA levels are indicative of ongoing damage to the transplanted
organ, irrespective of the underlying biology of rejection. Therefore, the ability of the assay to detect
AR versus non-rejection was calculated, where non-rejection was defined as all specimens that were
classified as STA, BL, or OI. Additionally, the performance of the assay to discriminate AR from
complete absence of injury (STA) was also evaluated. A summary of demographic information and
sample characteristics are provided in Table 1. All pathology samples were read at UCSF by a single
renal pathologist and rated according to the recently updated Banff criteria [18].

Table 1. Demographics and characteristics a.

Phenotype Characteristic Active Rejection
(38 Samples)

Non-Rejection

Stable
(82 Samples)

Borderline AR
(72 Samples)

Other Injury
(25 Samples) b

Combined
(179 Samples)

Recipient age, year * (p-value < 0.0001)

(0, 18) 0 (0) 44 (53.7) 1 (1.4) 4 (16.0) 49 (27.4)
(18, 40) 10 (26.3) 32 (39.0) 18 (18.0) 8 (32.0) 58 (32.4)
(40, 80) 28 (73.7) 6 (7.3) 53 (73.6) 13 (52.0) 72 (40.2)
Mean ± SD 47.91 ± 14.31 20.04 ± 11.97 47.88 ± 13.24 44.75 ± 23.73 34.65 ± 19.87
Median 49.13 19.96 47.46 40.97 31.33
Range 23–76 3–70 5–74 3–80 3–80

Male/female, no. (%) (p-value = 0.5988)

Male 17 (44.7) 48 (58.5) 40 (55.6) 15 (60) 103 (57.5)
Female 21 (55.3) 34 (41.5) 32 (44.4) 10 (40) 76 (42.5)

Ethnicity, no. (%) (p-value = 1)

Hispanic or Latino 13 (34.2) 28 (34.1) 24 (33.3) 10 (40) 62 (34.6)
Not Hispanic or Latino 25 (65.8) 54 (65.9) 48 (66.7) 15 (60) 117 (65.4)

Race groups, no. (%) (p-value = 0.4695)

White or Caucasian 10 (26.6) 42 (51.2) 16 (22.2) 6 (24) 64 (35.8)
Black or African American 6 (15.8) 7 (8.5) 14 (19.4) 4 (16) 25 (14.0)
Asian or Pacific Islander 8 (21.1) 4 (4.9) 15 (20.8) 4 (16) 23 (12.8)
Other/Not reported 14 (36.8) 29 (35.4) 27 (37.8) 11 (44.0) 67 (37.4)

Recipient weight, kg (p-value = 0.6039)

Mean ± SD 76.22 ± 19.7 70.9 ± 8.8 79.18 ± 18.7 78.33 ± 17.1 78.1 ± 17.6
Median 72.5 73.0 78.0 76.0 76.0
Range 45–119 52–81 46–134 47–109 46–134
Unknown 6 72 7 7 86

DSA positive, no. (%) (p-value = 0.1928)

Yes 15 (39.5) 0 (0) 18 (25) 2 (8) 20 (11.2)
No 21 (55.3) 0 (0) 48 (66.7) 3 (12) 51 (28.5)
Not recorded 2 (5.3) 82 (100) 6 (8.3) 20 (80) 108 (60.3)

Indication for renal transplantation, no. (%) (p-value = 0.4869)

Glomerulonephritis 5 (13.2) 6 (7.3) 4 (5.6) 1 (4) 11 (6.1)
Focal segmental glomerulosclerosis 5 (13.2) 5 (6.1) 6 (8.3) 2 (8) 13 (7.3)
Diabetes mellitus 5 (13.2) 3 (3.7) 15 (20.8) 5 (20) 23 (12.8)
Thin basement membrane nephropathy 0 (0) 0 (0) 2 (2.8) 0 (0) 2 (1.1)
Polycystic kidney disease 3 (7.9) 2 (2.4) 7 (9.7) 1 (4) 10 (5.6)
Solitary kidney 0 (0) 0 (0) 3 (4.2) 0 (0) 3 (1.7)
Hypertension 4 (10.5) 2 (2.4) 13 (18.1) 3 (12) 18 (10.1)
IgA nephropathy 3 (7.9) 0 (0) 7 (9.7) 1 (4) 8 (4.5)
Lupus nephritis 2 (5.3) 0 (0) 0 (0) 0 (0) 0 (0.0)
ANCA—vasculitis 1 (2.6) 0 (0) 2 (2.8) 0 (0) 2 (1.1)
Other/Unknown 10 (26.3) 64 (78.1) 13 (18.1) 12 (48) 89 (49.7)
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Table 1. Cont.

Phenotype Characteristic Active Rejection
(38 Samples)

Non-Rejection

Stable
(82 Samples)

Borderline AR
(72 Samples)

Other Injury
(25 Samples) b

Combined
(179 Samples)

Donor source *, no. (%) (p-value < 0.0001)

Living related 1 (2.8) 2 (2.4) 9 (12.5) 3 (12) 14 (7.8)
Living unrelated 2 (5.3) 50 (61) 18 (25) 7 (28) 75 (41.9)
Deceased unrelated 35 (92.1) 30 (36.6) 45 (62.5) 15 (60) 90 (50.3)

* Indicates the association with AR status (AR/non rejection) was statistically significant (p < 0.001). Categorical
variables were tested using Fisher’s exact test for count data, and numerical variables were tested using a likelihood
ratio test based on a logistic regression. a Characteristics and demographic information are based on all samples
drawn on the day of biopsy; data reflects multiple samples for some patients. b Other injuries included: chronic
allograft nephropathy (10 samples), drug toxicity (11 samples), BK nephritis (1 sample), acute tubular necrosis
(1 sample), transplant glomerulopathy (1 sample), and post borderline-TCMR (1 sample). DSA, donor specific
antibodies; AR, active rejection.

3.2. dd-cfDNA and eGFR in Kidney Transplant Recipients

The amount of dd-cfDNA was significantly higher in the circulating plasma of the AR group
(median = 2.32%) compared with the non-rejection group (median = 0.47%, p < 0.0001) (Table 2, Figure
S2). Additionally, the median level of dd-cfDNA was significantly higher in the AR group compared
with all three individual non-rejection subgroups: BL group (0.58%), STA group (0.40%), and OI
(0.67%, all comparisons, adj. p < 0.0001) (Figure 2A, Table S2). That the dd-cfDNA burden was higher
in the AR group as compared to the BL group indicates that dd-cfDNA fraction may be used to
track the evolution of early injury to more established rejection, as well as any subsequent recovery.
The differences between the levels of dd-cfDNA between any of the non-rejection subgroups (STA, BL,
and OI) were not significant (Figure 2A; Table S2).

In contrast to dd-cfDNA, eGFR scores did not have as much discriminatory ability for
differentiating AR and individual non-rejection groups (Table 2, Figure S2). Overall, the median
eGFR score in the AR group (45.67) was significantly lower than that observed in the non-rejection
group (76.6, p < 0.0001) (Table 2 and Table S2, Figure S2) and even lower compared to the STA group
alone (104.5, adj. p < 0.0001) (Table 2 and Table S2, Figure 2B). However, unlike the dd-cfDNA results,
there was no difference in median eGFR scores between the AR and BL groups (45.67 vs. 55.99, adj.
p = 0.461) (Table 2 and Table S2; Figure 2B). Additionally, compared with the STA group, eGFR levels
were significantly higher in the BL (55.99, adj. p < 0.0001) and OI (57.4, adj. p < 0.0001) groups (Table 2
and Table S2, Figure 2B).

Table 2. Summary statistics for donor-derived cell-free DNA (dd-cfDNA) and estimated glomerular
filtration rate (eGFR) variables across AR and non-rejection groups.

Parameter Active Rejection
Non-Rejection

Stable Borderline AR Other Injury Combined

dd-cfDNA

Number of samples (%) 38 (17.5) 82 (37.8) 72 (33.2) 25 (11.5) 179 (82.5)
Mean (SD) 4.64 (5.45) 0.90 (1.36) 0.95 (1.31) 0.89 (0.91) 0.92 (1.28)
Median (range) 2.32 (0.1–23.9) 0.4 (0.03–6.8) 0.58 (0.02–6.7) 0.67 (0.08–3.69) 0.47 (0.04–6.78)

eGFR

Number of samples (%) 38 (17.5) 82 (37.8) 72 (33.2) 25 (11.5) 179 (82.5)
Score mean (SD) 49.0 (22.4) 99.5 (16.1) 55.9 (21.4) 63.8 (29.0) 77.0 (8.45)
Score median (range) 45.67 (8.0–100.4) 104.5 (47.4–131.1) 55.99 (6.4–109.4) 57.4 (25.0–116.9) 76.06 (6.4–131.1)

AR, active rejection.
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followed by Dunn multiple comparison tests with Holm correction. *** indicates adj. p < 0.0001 from
all other group comparisons (see Table S2). AR, active rejection; BL, borderline; OI, other injury; STA,
stable; dd-cfDNA, donor-derived cell-free DNA; eGFR, estimate glomerular filtration rate.

3.3. Performance Estimates for Discriminatory Ability of Tests

With a dd-cfDNA cutoff of >1%, the mmPCR-NGS method had an 88.7% sensitivity (95% CI,
77.7–99.8%) and 72.6% specificity (95% CI, 65.4–79.8%) for detection of AR. Sensitivity and specificity
values are shown over the range of dd-cfDNA cutoffs in Figure 3A. The AUC was 0.87 (95% CI,
0.80–0.95). Based on a 25% prevalence of rejection in an at-risk population, the positive predictive
value (PPV) was projected to be 52.0% (95% CI, 44.7–59.2%) and the negative predictive value (NPV)
was projected to be 95.1% (95% CI, 90.5–99.7%).

Sensitivity and specificity were lower using eGFR (Figure 3B). Using an eGFR cutoff score <60
for AR, sensitivity and specificity values were 67.8% (95% CI, 51.3–84.2%) and 65.3% (57.6–73.0%),
respectively, with an AUC of 0.74 (0.66–0.83). The projected PPV and NPV values of eGFR were 39.4%
(31.6–47.3%) and 85.9% (75.9–92.2%), respectively.

As a post hoc analysis, we also evaluated a combination of eGFR with dd-cfDNA. Although we
do not have a large number of samples to train a combined model, we can still see potential empirical
rejection zones. Samples with a very high eGFR score, for example, tend to correspond to non-rejection
samples (Figure S1). Defining the active rejection zone to be dd-cfDNA level >1% and eGFR <100, and
non-rejection to be dd-cfDNA level <1% or eGFR >100, the combined dd-cfDNA and eGFR markers
correctly classified 32/38 (84.2%) AR samples, and 145/179 (81.0%) non-rejection samples. Meanwhile
at an equivalent specificity of 81.0%, (using a cut off of 1.3% dd-cfDNA) the sensitivity of the dd-cfDNA
marker alone was 82.3%. Therefore the combined biomarker approach appeared to add little or no
value over cfDNA alone.
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Figure 3. Predictive statistics for active rejection versus non-rejection. Sensitivity (red line) and
specificity (blue line) are depicted over the observed range of dd-cfDNA levels (A) and eGFR scores
(B). Reported sensitivity and specificity correspond to cutoffs of 1% for dd-cfDNA and a score of 60 for
eGFR. PPV and NPV are based on a 25% AR prevalence. AUC, area under the curve; PPV, positive
predictive value; NPV, negative predictive value.
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3.4. dd-cfDNA Performance in Unique Biopsy-Confirmed Subgroups

Among the biopsy-matched samples, 103 (47.5%) were biopsied for clinical reasons, whereas 114
(52.5%) were biopsied according to protocol (Table 3 and Table S3). Figure 4 depicts sample dd-cfDNA
levels among all subgroups; 85 (39.2%) had dd-cfDNA levels >1%. Of those, 22 (25.9%) were STA;
the remainder were AR (33 (38.8%)), OI (10 (11.8%)), or BL (20 (23.5%)). Of the individual groups, 33
(86.8%) of the total AR samples and 22 (26.8%) of the total STA samples had dd-cfDNA levels above
1%. In comparison, 20 (27.8%) of the total BL samples and 10 (40.0%) of the total OI samples had
dd-cfDNA levels above 1%.

Table 3. Cohort breakdown into for-cause and protocol biopsy.

Rejection Status Biopsy Reason Total Median Low High Mean SD

AR
For-cause 25 2.04 0.09 23.9 3.85 4.81
Protocol 13 3.56 0.12 23.4 6.16 6.44

BL
For-cause 39 0.64 0.02 6.54 1.07 1.32
Protocol 33 0.33 0.05 6.69 0.82 1.30

OI
For-cause 12 0.865 0.08 3.69 1.03 1.02
Protocol 13 0.25 0.08 2.65 0.76 0.82

STA
For-cause 27 0.54 0.12 5.38 1.12 1.36
Protocol 55 0.26 0.03 6.78 0.80 1.37

AR, active rejection; BL, borderline; OI, other injury; STA, stable.
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Figure 4. Discrimination of active rejection by dd-cfDNA in biopsy-matched samples stratified by
biopsy type. The number of samples per group and the distribution of their dd-cfDNA levels are
depicted for protocol biopsy (A) and for-cause biopsy (B) samples. Boxes indicate inter-quartile range,
horizontal lines represent medians. AR, active rejection; BL, borderline; OI, other injury; STA, stable.

Figure 4 shows assay performance for the subset of samples drawn at the time of a for-cause
biopsy (4A) and protocol biopsy (4B); performance shown in protocol biopsies is expected to reflect
performance when the assay is used in routine surveillance, that is, when there are no signs of renal
injury. This cohort of 114 samples showed a 92.3% sensitivity (95% CI, 64.0–99.8%) and 75.2% specificity
(95% CI, 65.7–83.3%) for detection of AR. The AUC was 0.89 (95% CI, 0.76–0.99). Based on a 25%
prevalence of rejection in an at-risk population, the positive predictive value (PPV) was projected to be
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55.4% (95% CI, 46.2–64.7%) and the negative predictive value (NPV) was projected to be 96.7% (95% CI,
90.6–99.9%).

Sensitivity, specificity, PPV and NPV were also calculated at different dd-cfDNA level rejection
cutoffs. Table S1 shows the metrics at 0.6%, 0.8%, 1.0%, 1.2%, 1.4%, and 1.6%. Raising the cutoff has
the effect of improving the specificity and the PPV; lowering the cutoff improves sensitivity and NPV.

3.5. Relationship Between dd-cfDNA and Rejection Type

Of the 38 samples with biopsy-proven AR, 16 were classified as either ABMR or ABMR and
borderline T-cell-mediated rejection (bTCMR); 12 had a combination of both ABMR and TCMR;
10 were classified as either TCMR or TCMR and bABMR. In addition, 13 and 59 BL samples were
classified as bAMBR and bTCMR, respectively. Figure 5 shows the relationship between dd-cfDNA
level and type of rejection (for groups with known ABMR or known TCMR). Median dd-cfDNA
did not differ significantly between AMBR (2.2%), ABMR/TCMR (2.6%), or TCMR (2.7%) groups
(p = 0.855) (Table S4). The study contained a range of pathologies, and the data indicate that this assay,
unlike other published studies measuring cfDNA by other assays [14], is robust to different rejection
types (Table S5). The dd-cfDNA breakdown of bABMR and bTCMR samples are depicted in Figure S3.
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Figure 5. dd-cfDNA as a function of antibody-mediated—versus T-cell—mediated rejection.
Boxes indicate interquartile range (25th to 75th percentile); horizontal lines in boxes represent medians;
dots indicate all individual data points. p-values for dd-cfDNA adjusted using Kruskal–Wallis rank
sum test. a Samples assigned ABMR or ABMR and bTCMR. b Samples assigned ABMR and TCMR.
c Samples assigned TCMR or TCMR and bABMR. ABMR, antibody-mediated rejection; TCMR,
T-cell-mediated rejection.

3.6. dd-cfDNA Levels by Donor Type

To assess the relationship between dd-cfDNA and donor type (living related, living non-related, and
deceased non-related) a linear mixed-effects model was constructed using a log transformed dd-cfDNA
as the response and donor type as the predictor for the non-rejection group. The log-transformation
was applied to satisfy the model’s assumptions. The test was limited to the non-rejection group due to
the limited number of AR samples in two groups (living related and living non-related). An ANOVA
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Wald-test with Kenward–Roger approximation for the degrees of freedom showed significance (p = 0.045).
Tukey’s post-hoc test was used to determine the difference among the three groups: none of the
post-hoc tests demonstrated any association (Figure 6, Table S6). It is possible that the overall effect is
driven by a sub-category of the non-rejection group (STA, BL, or OI) or the effect between the groups
is smaller than detectable with the current sample size [30].J. Clin. Med. 2018, 7, x FOR PEER REVIEW  12 of 18 
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3.7. dd-cfDNA Variability over Time

Two analyses were designed to evaluate the natural variability in dd-cfDNA over time in
biopsy-matched, non-rejection patients. The first sub-analysis was a cross-sectional analysis of
60 plasma samples from 60 different patients, collected immediately following surgery (within three
days (“Day 0”)) or at 1, 3, 6, or 12 months post-surgery. Among these STA patients, dd-cfDNA
levels were lower at month 0 than subsequent time points; however, for most of these STA samples
dd-cfDNA levels were <1% across all time points (Figure 7A). No association was observed between
Day 0 samples and the other time points, although the overall distribution of dd-cfDNA levels in the
Day 0 group appears lower in comparison (Figure 7A).
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To evaluate the normal intra-patient variation in donor fraction, the second sub-analysis
longitudinally assessed 10 individual patients across four time points (varying between about 1 month
and 1 year post transplantation (minimum interval: 11 days, maximum interval: 345 days)). Overall,
organ injury occurred at dd-cfDNA levels above 1% (Figure 7B). The inter-patient standard deviation
within this cohort was 0.16 (95% CI, 0.0–0.37) and the intra-patient standard deviation was 0.42 (95% CI,
0.32–0.56). The intraclass-correlation coefficient was low (0.1193), which suggests that the variability in
these data are mostly due to intra-patient variation. Figure 7C depicts all available longitudinal data
among patients that experienced a rejection. In 9/11 patients, dd-cfDNA levels were above 1% prior
to rejection.

4. Discussion

In this study, median dd-cfDNA was significantly higher in the AR group (2.32%) versus the
non-rejection group (0.47%; p < 0.0001). Analysis of performance estimates demonstrated that the
mmPCR-NGS method was able to discriminate active from non-rejection status with an AUC of 0.87
and high sensitivity (88.7%) and specificity (72.6%) at an AR cutoff of >1% dd-cfDNA. Based on a 25%
prevalence of rejection, projected PPV and NPV were 52.0% and 95.1%, respectively. In contrast, eGFR
scores were generally less discriminatory, with a 67.7% sensitivity and 65.3% specificity, and projected
PPV and NPV of 39.4% and 85.9%, respectively. Therefore, if eGFR measurements were used as the
sole clinical decision point, about 1 in 7 patients found to be at low risk of rejection would actually be
experiencing rejection, and would not be referred for an indication biopsy—this is in comparison to the
projected NPV for dd-cfDNA that suggests that only 1 in 20 patients would miss an indication biopsy
where it might be clinically necessary. Taken together, the superior performance of this SNP-based
dd-cfDNA assay over that of the current standard of care for the evaluation of allograft rejection holds
promise for enabling patients a greater opportunity for timely therapy in the case of an allograft injury.

Levels of dd-cfDNA also provided discrimination of AR from the three non-rejection subgroups
(STA, BL, and OI); median dd-cfDNA levels were significantly higher for samples with biopsy-proven
AR (2.3%) versus BL (0.6%), OI (0.7%), and STA (0.4%). In a post hoc analysis, we examined the
ability of dd-cfDNA combined with eGFR to predict rejection status (AR/non-rejection) in biopsy
matched samples (Figure S1). This combined approach correctly classified 32/38 (84.2%) AR and
145/179 (81.0%) non-rejection samples, though in a head-to-head comparison it showed little to no
improvement over dd-cfDNA alone. Combining dd-cfDNA with other markers may provide improved
predictive value, but this was outside the scope of this study. Also of note, while both dd-cfDNA and
eGFR can be used to differentiate AR and STA cases, the BL and OI samples stratify differently: they
tend to aggregate with STA when using dd-cfDNA and with AR when using eGFR. This suggests that
dd-cfDNA could be used together with eGFR to differentiate patients into three groups—STA patients,
AR patients, and patients experiencing BL or OI.

In a recent study that amplified hundreds of target SNPs in dd-cfDNA to detect active rejection
in kidney allografts, that method was able to discriminate AR from non-rejection with an AUC of
0.74, 59% sensitivity, and 85% specificity [14]. In comparison with that study, the novel dd-cfDNA
test described in the current study showed a higher AUC value (0.87) as well as greater sensitivity
(89%). On the other hand, specificity (73%) was slightly lower in the current study, partly driven
by the fact that a majority of the “false positives” were cases with BL and OI indicating some form
of organ injury. The predefined analysis in this study used 1% dd-cfDNA cutoff, based on prior
experience [14]; however, as a different sensitivity/specificity tradeoff may be optimal in different use
cases, performance was calculated, in a post hoc fashion, for additional cfDNA cutoffs: 0.6%, 0.8%,
1.2%, 1.4%, and 1.6 % (Table S1).

Another important finding of this study was that the fraction of dd-cfDNA did not differ between
ABMR and TCMR groups, with dd-cfDNA levels of 2.2% and 2.7%, respectively. These results are
novel considering that a previously conducted study by Bloom et al. (2017), which used a different
assay, found significantly higher dd-cfDNA levels for ABMR (2.9%) than for TCMR (≤1.2%) [14],
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showing a lower ability to detect T-cell mediated rejections. Though the assay used in that study also
measured dd-cfDNA, the methods used by the two assays differ greatly. It is unclear whether that test
could not differentiate AR from non-rejection in cases of TCMR or if the result was due to the smaller
sample size of that group in that study (n = 11). Regardless, it appears that dd-cfDNA measurements
based on the mmPCR assay in this study can accurately discriminate AR from non-rejection across a
range of pathologies, including both acute and chronic findings, in both the ABMR and TCMR groups.
An additional finding in this study is that borderline, or early rejection injury, has a lower burden of
dd-cfDNA than more established injury, making it possible to use this sensitive assay to track evolution
of, or recovery from, AR.

One barrier to widespread clinical use of dd-cfDNA as a diagnostic tool for monitoring organ
transplant has been the limitations in measuring dd-cfDNA in certain cases, such as when the donor
genotype is unknown or when the donor is a close relative. Given the design of the assay used here, it
is possible to quantify dd-cfDNA without prior recipient or donor genotyping. Further, there is no
need for a computational adjustment based on whether the donor is related to the recipient. In this
study, evaluation of dd-cfDNA levels by donor type revealed that regardless of donor type (living
related, living non-related, deceased non-related), dd-cfDNA levels were similar across all donor types
within in the AR and non-rejection categories.

A limitation of this study is that it was a retrospective analysis of archived samples from a
single center. However, the central geographical area enabled all biopsies to be performed by a
single pathologist, which may have helped minimize variability in biopsy classification; further, all
experimenters were kept blinded during the process of data generation. The retrospective study design
may have led to differences in patient characteristics across the rejection groups; for example, the STA
group was enriched with younger patients who may be better suited immunologically to tolerate
transplanted organs compared to older-aged patients. However, these age differences likely did not
affect the validity of the study findings.

A strength of this study is the large number of samples drawn at the time of a protocol biopsy.
Performance of the assay among samples drawn at the time of a protocol biopsy are more reflective of
expected performance during routine use of the assay, where there are no overt signs of injury; this is
in contrast to for-cause biopsies, which are performed in a high-risk cohort where there are peripheral
signs of organ injury. In this study, more than half (53%, 114/217) of the biopsy-matched samples
were performed on protocol. The assay showed better performance in this cohort, with a sensitivity of
92.3%, specificity of 75.2%, and AUC of 0.89%. This data suggests that application of the dd-cfDNA
assay in a clinical setting could potentially reduce the need for protocol biopsies.

Another strength is the variety of patient samples in the non-rejection group, which comprised
not only STA, but also BL and OI samples. This allowed for additional analyses in this study,
which found that dd-cfDNA was significantly different in the AR group versus BL and OI groups.
Additional sub-analyses by type of AR (ABMR and TCMR), as well as by donor type, demonstrated
that dd-cfDNA levels were able to discriminate AR versus non-rejection in a variety of rejection
and patient types. Further, the SNP-based mmPCR methodology underlying this assay has been
extensively validated in the context of prenatal testing, and has been used to determine the DNA
fraction of the minor constituent in a clinical setting in over a million maternal/fetal DNA samples.
Finally, the inclusion of longitudinal data enabled a unique evaluation of the natural variability of
dd-cfDNA in transplant patients over time. Inter-patient variability data demonstrated that between 0
and 12 months post-surgery, most patients with STA biopsies had dd-cfDNA levels below 1%, and
most patients with a positive biopsy had a positive dd-cfDNA test at a time point prior to the positive
biopsy. Taken together, this suggests that this mmPCR assay may be used for routine monitoring, to
determine whether a renal transplant patient is experiencing organ injury that may require a change
in management.
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5. Conclusions

In conclusion, this study validates the use of dd-cfDNA in the blood as an accurate marker of
kidney injury/rejection across a range of pathologies with acute and chronic findings. This rapid,
accurate, and noninvasive technology allows for detection of significant renal injury in patients better
than the current standard of care, with the potential for better patient management, more targeted
biopsies, and improved renal allograft function and survival.

Supplementary Materials: The Tables S1–S6 and Figures S1–S3 are available online at http://www.mdpi.com/
2077-0383/8/1/19/s1.
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