Presence of Circulating Tumor DNA in Surgically Resected Renal Cell Carcinoma is Associated with Advanced Disease and Poor Patient Prognosis
Andres Correa1, Denise C Connolly2, Mustafa Balcisoglu1, Hsin-Ta Wu1, Scott Dashner3, Svetlana Shchegrova4, Ekaterina Kalashnikova5, Hemant Pawar6, Robert G Uzzo1, Yulan Gong2, Deb Kister7, Michelle Collins1, Mary Donovan8, Ryan Writers1, Alexey Aleshin9, Himanshu Sethi10, Raheleh Salari11, Maggie Louie12, Bernhard Zimmermann13, Philip Abbosh1

1Fox Chase Cancer Center, Philadelphia, PA; 2Natera, Inc., San Carlos, CA; 3CHDI Foundation, Princeton, NJ.

Background
- Circulating tumor DNA (ctDNA) has emerged as a promising, non-invasive biomarker for preclinical detection and monitoring of various cancers.1-4
- The utility of ctDNA assessment in renal cell carcinoma (RCC) is not well established.2
- Here we evaluate the potential of a bespoke, multiplex PCR, whole exome sequencing (WES)-based approach for ctDNA detection.

Methods
- A cohort consisted of 45 patients with stage Ib-IV RCC who underwent complete surgical resection.
- ctDNA was measured in plasma samples drawn pre-surgery (n = 37; baseline) and at post-operative time points (n = 44) using bespoke assay targeting patient-specific tumor variants.

Table 1. Patient Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients (n = 45)</th>
<th>18 Non-resecting</th>
<th>17 Relapsing</th>
<th>10 Non-Relapsing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>Female</td>
<td>11/34</td>
<td>4/13</td>
<td>3/7</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60 (19-85)</td>
<td>60 (20-85)</td>
<td>60 (20-85)</td>
<td>60 (20-85)</td>
</tr>
<tr>
<td>Median Age at Diagnosis (years)</td>
<td>66 (33-85)</td>
<td>Unspecified</td>
<td>Unspecified</td>
<td>69 (20-85)</td>
</tr>
<tr>
<td>Tumor Size (cm)</td>
<td>9.3 (2-30)</td>
<td>9.3 (2-30)</td>
<td>9.3 (2-30)</td>
<td>9.3 (2-30)</td>
</tr>
<tr>
<td>Clear Cell</td>
<td>Yes</td>
<td>27/18</td>
<td>15/17</td>
<td>10/10</td>
</tr>
<tr>
<td>Papillary</td>
<td>Yes</td>
<td>27/18</td>
<td>15/17</td>
<td>10/10</td>
</tr>
<tr>
<td>Renaladenalized</td>
<td>Yes</td>
<td>18/27</td>
<td>11/16</td>
<td>7/9</td>
</tr>
</tbody>
</table>

Table 2. ctDNA Detection and its Association with Clinicopathological Characteristics

<table>
<thead>
<tr>
<th>Association of ctDNA in Plasma of Patients with Renal Cell Carcinoma</th>
<th>Tumor Stage</th>
<th>Grade</th>
<th>Number of Variants</th>
<th>Number of ctDNA-positive</th>
<th>Total of ctDNA-positive ctDNA-negative</th>
<th>Total of ctDNA-negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ctDNA detection</td>
<td>Pre-operative</td>
<td>Post-operative</td>
<td>Pre-operative</td>
<td>Post-operative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Baseline ctDNA-negative</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>ctDNA-positive</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Association of ctDNA-positive with Clinicopathological Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Stage (T1b-T2a)</td>
<td>11/14</td>
<td>3/14</td>
<td>11/14</td>
<td>3/14</td>
<td>11/14</td>
<td>3/14</td>
</tr>
<tr>
<td>High Stage (T3-4)</td>
<td>24/21</td>
<td>7/21</td>
<td>24/21</td>
<td>7/21</td>
<td>24/21</td>
<td>7/21</td>
</tr>
<tr>
<td>Metastatic Status (M0-M1)</td>
<td>26/19</td>
<td>9/19</td>
<td>26/19</td>
<td>9/19</td>
<td>26/19</td>
<td>9/19</td>
</tr>
</tbody>
</table>

Figure 1. Signetra Clinical Protocol

Figure 2. Genomic Variants Most Frequently Observed in the Patient Cohort with Renal Cell Carcinoma

Figure 3. Disease Recurrence and Survival of Patients with Detected ctDNA

Figure 4. Presence of ctDNA in pre-operative plasma is significantly associated with increased tumor size (mean 9.3 vs. 7 cm, p = 0.05) and poorly differentiated tumors (grade III-IV vs. II, p = 0.0001)

Figure 5. Presence of ctDNA in post-operative plasma sample is associated with reduced relapse-free survival (p = 0.0017, HR = 4.57, 95% CI: 2.4 - 8.16), while overall survival was not observed to be not statistically significant (p = 0.08, HR = 2.8, 95% CI: 0.7 - 11.43).

Conclusions
- Presence of pre-surgical ctDNA strongly correlates with advanced grade RCC and increased tumor volume. Despite low plasma volumes, the bespoke assay detected ctDNA in 49% of baseline samples.
- Post-operative ctDNA presence is correlated with clinical recurrence. However, absence of ctDNA does not preclude recurrence as RCC is known to shed low amounts of ctDNA.
- Higher sample volumes and multi-region tumor biopsies could enhance detection rates. This personalized approach has the potential to be used for ctDNA-based detection of recurrence in patients with advanced stage RCC.

References

Acknowledgements and Disclosures
A.C., D.C., U.S., D.H., M.O., M.R., and P.K.C. would like to acknowledge Lilly’s effort to help with the study presented at the European Society of Medical Oncology | Barcelona, Spain | September 27 - October 1, 2019.

Appendix: Quick Response is for personal use only.
Partner with us to help your patients thrive and prosper

A kidney transplant can feel like getting another chance at life. That's why taking care of a patient's new kidney is of utmost importance.

The ProActive Study

A Study For KIDNEY TRANSPLANT PATIENTS

The ProActive Study For Kidney Transplant Patients
Prospera for Active Rejection
We can advance innovation in organ transplant care

Together with you and other partners in the ProActive Study, we will generate insights that enable earlier, more precise assessment of allograft rejection. Over time, these insights hold the promise to improve the lives of renal transplant patients everywhere.

ORGAN REJECTION IS A PROBLEM

Many kidney transplant failures occur within the first five to ten years\(^3,4\) because organ rejection isn’t caught early enough and treated effectively. As a result, the patient needs a new organ and must start the waitlist process again.

Let’s improve the management of transplant patients

Prospera\(^\text{TM}\) and the ProActive Study have the power and potential to change transplant patient management for good. The study will follow approximately 3,000 renal transplant patients over three years to evaluate the impact of the Prospera transplant assessment test across three critical measures:

1. Management through effective use of biopsy
2. Outcomes including improved graft survival
3. Ability to identify subclinical and clinical rejection compared to serum creatinine

Kidney transplants performed each year in the U.S.\(^1\)

Kidney transplant failures within 5 years\(^3\)

People living with a kidney transplant in the U.S.\(^2\)

Kidney transplant failures within 10 years\(^4\)
Our core technology

Prospera is designed to assess kidney transplant damage by evaluating the percentage of donor-derived cell-free DNA (dd-cfDNA) in a transplant recipient’s blood. Too much donor-derived dd-cfDNA in the recipient’s blood is an early indication of potential organ rejection.

Supplementing the current standards of monitoring (i.e., regular biopsies, evaluation of serum creatinine), Prospera is intended to evaluate kidney rejection status to help you:

- Eliminate unnecessary biopsies resulting from inaccurate tests
- Make treatment more timely
- Personalize immunosuppression therapy

The Prospera transplant assessment test is:

- Simpler and less invasive than biopsy; no donor genotyping required
- Suitable for most renal allograft patients across ethnicities
- More sensitive and specific for clinical and subclinical active rejection than serum creatinine
Together, we can help patients thrive and prosper

We need your help. Natera is applying its experience of performing over 1.5 million cell-free DNA tests in the prenatal setting to the complex world of transplantation. Thought leaders like you are essential to successfully advancing the management of post-kidney transplantation through innovation. Your participation in the ProActive Study contributes to the exploration of cell-free DNA’s potential to assess the health of a transplanted organ.

This test was developed by Natera, Inc., a laboratory certified under the Clinical Laboratory Improvement Amendments (CLIA). This test has not been cleared or approved by the US Food and Drug Administration (FDA). Although FDA does not currently clear or approve laboratory-developed tests in the US, certification of the laboratory is required under CLIA to ensure the quality and validity of the tests.

© 2019 Natera, Inc. PRO_ATC_PhilosopherRegistry_20190524_NAT-801957

For more information, visit:
natera.com/prospera
joinproactivestudy.com
The ProActive Study For Kidney Transplant Patients
Prospera for Active Rejection

IMAGINE

a future where your kidney transplant patients live longer, healthier lives thanks to more timely actions to prevent kidney graft failure. Imagine relying on just a simple blood test for an earlier, more comprehensive picture of transplanted kidney health.

TOGETHER

we can provide important benefits for your transplant patients: truly meaningful hope for greater longevity and the best quality of life possible.
Explore a new technology for more-informed rejection assessment

Join us in understanding how the quantification of background cell-free DNA (cfDNA) may facilitate more precise rejection assessment and flag patients at high risk for false-negative interpretations.

The PEDAL Study

A Study For KIDNEY TRANSPLANT PATIENTS

The PEDAL Study for Kidney Transplant Patients
Prospera Enhancement by Detecting Background Cell-free DNA Levels
PEDAL Study

Together with our study collaborators, we hope to gain a better understanding of how quantifying the absolute concentration of background cell-free DNA (cfDNA) may allow for a more precise and confident assessment of allograft rejection—especially in identifying patients at-risk of false-negative interpretations.

Defining background cell-free DNA and its influence on your result

Background cell-free DNA originates from the transplant recipient and is naturally occurring in variable amounts within the plasma.

\[
\text{Amount of donor-derived cfDNA from the transplanted kidney} = \frac{\% \text{ donor-derived cfDNA}}{\text{Background (total) cfDNA in the blood sample}}
\]

When the amount of background cfDNA is atypical, it impacts the percentage of dd-cfDNA and may compromise the depiction of risk for active rejection.

Let’s understand how to more precisely assess for active rejection

Prospera™ and the PEDAL Study will delve deeper into how to better manage your transplant patients using cell-free DNA as a non-invasive biomarker for active rejection. The study will include 500 kidney transplant patients from 20 major U.S. centers to measure diagnostic capability of the update across three critical measures:

1. **Performance in both clinically indicated and surveillance biopsies**
2. **Ability to identify both antibody mediated rejection and T cell-mediated rejection**
3. **Correlation against clinical and/or histological resolution of rejection**
Leveraging our findings from two million cfDNA tests, Prospera is designed to assess kidney transplant injury by evaluating the percentage of donor-derived cell-free DNA (dd-cfDNA) in a transplant recipient’s blood. Too much dd-cfDNA in the recipient’s blood is an early indication of potential organ rejection.

Prospera’s core technology

![Diagram of Prospera’s core technology]

Recipient blood

Donor

Recipinet

Mix of donor and recipient cell-free DNA (Donor genotyping not required)

Natera distinguishes between donor and recipient DNA using SNPs

Active rejection: Upon cell injury, donor-derived cell-free DNA (dd-cfDNA) is released

No active rejection: Minimal dd-cfDNA is released in a stable patient’s blood

Based on our leadership in cfDNA innovation, Natera has now introduced two novel techniques for even greater precision in Prospera results:

Two novel techniques for greater precision

1. **Proprietary Library Preparation**
 - Proprietary library preparation step that adjusts for background cfDNA introduced into the sample during transport

2. **Quantified Background CfDNA**
 - Unique quantification method that can identify atypical background cfDNA that may influence the reported result for a particular patient

= Potentially fewer false negative interpretations
With Prospera, we delivered a non-invasive way to identify rejection, giving you greater confidence in making treatment decisions for your organ transplantation patients. But we can do more—we’re committed to continue refining this test to support you in bringing hope to these patients. Starting now.

Through PEDAL and other studies, we look to you as our partner in delivering innovations that offer a second chance to patients. Because together, we can make meaningful changes—in individual lives and the field of organ transplantation.

For more information, visit:
www.natera.com/prospera
pedal@natera.com

The test described has been developed and its performance characteristics determined by the CLIA-certified laboratory performing the test. The test has not been cleared or approved by the US Food and Drug Administration (FDA). Although FDA has generally not enforced the premarket review and other FDA legal requirements for laboratory-developed tests in the US, certification of the laboratory is required under CLIA to ensure the quality and validity of the tests. CAP accredited, ISO 13485, and CLIA certified. © 2020 Natera, Inc. All Rights Reserved. PRO_PEDALStudy_202005XX_NAT-X00000X
A kidney transplant is the greatest gift that can be given or received. Such a precious treasure must be cared for with the utmost diligence and attention.

A precise, non-invasive biomarker for rejection gives you the confidence you need to know that all is well. Natera will continue to refine and improve Prospera now and in the future. **We understand the importance of caring for patients and will always be your best partner.**
Seeing beyond the limit: Detect residual disease and assess treatment response

Summary of analytical and clinical data for Signatera™, the first ctDNA assay custom-built for MRD detection and treatment response

Introduction

Non-invasive monitoring of circulating tumor cells and molecular alterations has been an established method of detecting minimal residual disease in hematologic malignancies. However, progress in blood-based monitoring for solid tumors has been limited by the rarity and heterogeneity of circulating tumor cells and the extremely low concentrations of circulating tumor DNA (ctDNA) in the blood. With recent advances in next generation sequencing (NGS) technologies, there has been renewed interest in using ctDNA profiling as a tool for detecting residual disease, detecting relapse early, and assessing treatment response in solid tumors.

Signatera™ is the first ctDNA assay that has been custom-built for detecting molecular residual disease (MRD) and assessing treatment response, with the ability to detect ctDNA at a variant allele frequency (VAF) of <0.1% of cell free DNA (cfDNA) from plasma. This white-paper reviews the differences between Signatera and other ctDNA detection assays, summarizes data from the analytical and clinical validation of Signatera, and presents potential research applications of Signatera in clinical studies.

The Signatera approach

Currently available assays for detecting ctDNA from patient plasma tests for a fixed panel of hotspot or actionable mutations. Given the heterogeneity of cancer, even large generic panels targeting up to more than a hundred of genomic loci might detect only a few mutations from a given individual’s primary tumor. Mutations identified in these panels may not be tumor derived, making such approaches less specific. Additionally, the plasma-level VAF limit of detection (LOD) starts at approximately 0.1–1% for these conventional technologies, which is 10-fold lower than the 0.01% VAF LOD achieved with Signatera.

For the Signatera approach, somatic variants are identified by whole-exome sequencing of the primary tumor and the matched normal (whole blood) sample. Following this, a bespoke assay of 16 clonal, somatic variants are generated for each patient. The resulting “tumor signature,” individualized to each patient’s tumor, is monitored throughout the patient’s disease course to detect the presence of tumor DNA in the plasma.

There are several advantages with the Signatera approach. Compared to other ctDNA approaches, analytical sensitivity and specificity of Signatera is enhanced due to improved library preparation and molecular recovery, significantly reduced PCR error, and advance knowledge of specific variants present in a patient’s tumor. Furthermore, focusing on patient-specific variants enables ultra-deep sequencing (100,000X average depth of coverage) of each target to obtain a high level of confidence for a positive-ctDNA call, effectively lowering the limit of detection into the single–molecule range. The limit of detection for Signatera, measured in VAF, is 0.01%. This is equivalent to one mutant haploid genome in a background of 10,000 normal haploid genomes. Signatera is optimized to achieve high analytical specificity of >99.5%. Combining a low limit of detection and advanced knowledge of clonal, tumor-specific variants is how Signatera achieves high sensitivity and specificity in ctDNA detection.
Steps in the Signatera process

To monitor for cancer recurrence or to detect residual disease with ctDNA, the Signatera process starts with whole exome sequencing of the tumor tissue and the buffy coat from matched normal whole blood for each patient. Based on sequencing results, a list of somatic single-nucleotide and indel variants specific to each patient are bioinformatically identified and prioritized. Next, 16 somatic single-nucleotide and indel variants for multiplex PCR primer design are selected based on several factors, including the clonality, detectability, and frequency of the variants identified in the tumor tissue DNA. For longitudinal surveillance, cell free DNA (cfDNA) libraries are prepared from each blood sample, followed by patient-specific, 16-plex PCR. The amplicon products are tagged with sequencing barcodes and pooled for ultra-deep next generation sequencing, followed by data analysis to detect the presence or absence of ctDNA. 6

Steps in the Signatera work flow are outlined below (figure 1):

Step 1: Primary tumor tissue and matched normal blood are collected from each patient. Genomic DNA from tumor tissue and buffy coat are extracted, whole-exome sequenced, analyzed, and filtered for patient-specific somatic mutations.

Step 2: The top 16 somatic variants are selected based on clonality, detectability, and frequency of mutations. Multiple-PCR compatible primers are designed for each of the 16 somatic variants.

Step 3: Whole blood is collected at predefined time points for longitudinal surveillance.

Step 4: Plasma are isolated and cfDNA extracted, followed by assaying with the patient-specific 16-plex PCR pool.

Step 5: Following multiplex PCR amplification, ultra-deep sequencing is performed. Next-generation sequencing data are analyzed to detect the presence of ctDNA.

Figure 1: Signatera workflow
Analytical validation6,14,29

Signatera analytical validation was performed using two different sets of titration samples built from a) mononucleosomal DNA from cancer cell lines, and b) a commercially available mutation mixture from SeraCare, “SeraseqTM ctDNA Mutation Mix v2.”

Mononucleosomal DNA from three cancer cell lines, including two breast cancer cell lines (HCC2218, HCC1395) and one lung cancer cell line (NCI–H1395), were titrated into their matched normal B lymphoblast-derived counterparts (HCC2218–BL, HCC1395–BL, and NCI–H1395–BL, respectively). Titrations of tumor into normal mononucleosomal DNA were made at average VAFs (based on DNA input) of 1%, 0.5%, 0.3%, 0.1%, 0.05%, 0.03%, 0.01%, 0.005%, 0%. Six primer pools were tested with replicate numbers from two to nine (for each pool)—increasing with the dilution factor. In addition, a commercially available control SNV mixture (SeraseqTM ctDNA Mutation Mix v2) was titrated from 0.5% to 0.005%. Starting allele fractions were confirmed by SeraCare by droplet digital PCR. Two primer pools were tested in triplicate on these mixtures.

The starting total input into library prep for each reaction was 15,000-20,000 haploid genome equivalents. SNV targets from the corresponding tumor DNA spike-in samples were amplified using the 16-plex-PCR assay primer pools. The mPCR products were tagged with sequencing barcodes, then pooled with other mPCR barcoded products, and subsequently sequenced on an Illumina HiSeq 2500 Rapid Run with 50 cycles of paired-end reads using the Illumina Paired End v2 kit with an average read depth of ~100,000/target.

The sample-level performance was derived by calculating a binomial probability for detecting at least two clonal mutations at a given ctDNA level, assuming that the majority of the custom panels have between 10 to 16 clonal variants. As shown in Table 1, ctDNA would be detected in samples with ctDNA between tumor DNA concentration of 0.01% and 0.02% for >98% of samples. Reproducibility was calculated as the percent coefficient of variation (%CV) of the median VAF of positive targets. Sample-level performance calculated from orthogonal control samples from SeraCare is shown in Table 2.

Table 1: Sample-level performance calculated when at least 2 variants are detected from a set of 16 target SNVs

<table>
<thead>
<tr>
<th>Tumor DNA Concentration (%)</th>
<th>Tumor DNA Concentration Range (%)</th>
<th>Sensitivity Per Sample (%)</th>
<th>CV of Median VAF (%)</th>
<th>Data Points (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00375</td>
<td>0.0025-0.005</td>
<td>44.7-70.8</td>
<td>69.1</td>
<td>501</td>
</tr>
<tr>
<td>0.0075</td>
<td>0.005-0.01</td>
<td>58.9-83.3</td>
<td>44.2</td>
<td>562</td>
</tr>
<tr>
<td>0.015</td>
<td>0.01-0.02</td>
<td>98.5-100.0</td>
<td>23.8</td>
<td>474</td>
</tr>
<tr>
<td>0.025</td>
<td>0.02-0.03</td>
<td>99.9-100.0</td>
<td>25.1</td>
<td>278</td>
</tr>
<tr>
<td>0.04</td>
<td>0.03-0.05</td>
<td>100</td>
<td>17.6</td>
<td>289</td>
</tr>
<tr>
<td>0.0625</td>
<td>0.05-0.075</td>
<td>100</td>
<td>7.8</td>
<td>153</td>
</tr>
<tr>
<td>0.0875</td>
<td>0.075-0.1</td>
<td>100</td>
<td>16.1</td>
<td>72</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1-0.3</td>
<td>100</td>
<td>10.1</td>
<td>268</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3-0.5</td>
<td>100</td>
<td>6.4</td>
<td>120</td>
</tr>
<tr>
<td>0.75</td>
<td>0.5-1.0</td>
<td>100</td>
<td>6.6</td>
<td>117</td>
</tr>
</tbody>
</table>

Table 2: Sample-level performance calculated from orthogonal control samples from SeraCare

<table>
<thead>
<tr>
<th>Tumor DNA Concentration (%)</th>
<th>Sensitivity Per Sample (%)</th>
<th>CV of Median VAF (%)</th>
<th>Data Points (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>35.0-59.9</td>
<td>33.8</td>
<td>90</td>
</tr>
<tr>
<td>0.01</td>
<td>81.3-96.1</td>
<td>51.0</td>
<td>90</td>
</tr>
<tr>
<td>0.03</td>
<td>100</td>
<td>25.5</td>
<td>90</td>
</tr>
<tr>
<td>0.05</td>
<td>100</td>
<td>16.2</td>
<td>90</td>
</tr>
<tr>
<td>0.1</td>
<td>100</td>
<td>14.3</td>
<td>90</td>
</tr>
<tr>
<td>0.2</td>
<td>100</td>
<td>146</td>
<td>90</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>9.4</td>
<td>90</td>
</tr>
</tbody>
</table>
Designed without the need for molecular barcodes

Assays for low quantities of ctDNA detection often use molecular barcoding followed by hybrid capture as an approach to decrease error rates caused by process and sequencing-related artifacts. Molecular barcoding, also known as unique identifiers (UIDs), enable tagging and tracking of individual DNA molecules to distinguish somatic mutations from artifact mutations generated during the PCR and sequencing process. During research and development of Signatera, molecular barcoding approaches were also explored. However, use of molecular barcodes was found to sacrifice sensitivity without improving specificity, ultimately considered unnecessary, and not incorporated into the Signatera methodology.

There are several reasons why sensitivity and specificity may be compromised by approaches that utilize molecular barcoding, including hybrid capture and one-sided PCR:

- The depth and uniformity of sequencing is poor with hybrid capture, which decreases the quality of data across target sets. Specificity can also be variable across targets with non-uniform depth of read. At a minimum, a 5X to 10X sequencing depth per target input molecule is required to distinguish errors from mutations in the original target.

- Hybrid capture has been reported to cause DNA oxidative damage, such as 8-oxoguanine and cytosine deamination, which could lead to false positive results.\(^{19-21}\)

- We have observed the formation of chimeric molecules from the hybrid capture process, which can appear as an original target molecule and contribute to false positive calls. In principle, chimeric molecules should also occur with 1-sided PCR approaches and lead to false positive calls.

- The use of molecular barcodes is not robust enough for error correction with respect to input mass in hybrid capture and one-sided PCR approaches. In cases where there are low concentrations of ctDNA and more input mass is required, specificity will suffer.

Due to the reasons above, Natera has developed other methods in the workflow to optimize the sensitivity and specificity of Signatera without use of molecular barcoding.

Signatera prototype in the TRACERx study

A prototype of the Signatera assay was used in the non-small cell lung cancer (NSCLC) TRACERx study to phylogenetically profile and detect cancer tumor DNA recurrence up to 346 days earlier than standard radiological confirmed relapse.\(^5\) A sensitivity of 93%, with no false positives, was demonstrated for early relapse detection in patients with stages I–III lung cancer. When results produced in the TRACERx study for the same lung cancer cohort were compared with a generic lung panel, TRACERx identified 10 out of 10 ctDNA positive early-stage lung cancer cases compared to 7 out of 10 cases detected using a generic hotspot lung panel.\(^5\)

Following the TRACERx study publication, multiple improvements have been made to produce a more automated and scalable work flow with higher molecular recovery and lower error. The analytical validation for the assay in TRACERx was performed using synthetic SNV spikes and mixing libraries directly into the multiplex PCR test, which does not account for molecular loss during library preparation or differing DNA fragmentation. In contrast, the analytical validation for Signatera started with cfDNA mixtures from the tumor and matched normal samples during the library prep process. A comparison of the analytical sensitivity between the prototype and Signatera, as shown in Figure 2, demonstrates the sensitivity improvements that have been made since the TRACERx study at tumor DNA concentration levels below 0.5%.\(^5,6,18\)

Figure 2: Comparison of Analytical Sensitivity for Single SNV Detection between TRACERx and Signatera

![Graph showing sensitivity improvements between TRACERx and Signatera](image-url)
Pan-cancer clinical summary of Signatera
Since the TRACERx study in lung cancer, the potential clinical usefulness of Signatera has also been demonstrated in colorectal, breast, and bladder cancers (tables 3-5, figures 3-5).7-9

Table 3: Study overview of Signatera in colorectal cancer

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC stage</td>
<td></td>
<td>I to III</td>
</tr>
<tr>
<td>Prior treatment received</td>
<td></td>
<td>Received curative surgery and adjuvant chemotherapy</td>
</tr>
<tr>
<td># of blood time points</td>
<td></td>
<td>795</td>
</tr>
<tr>
<td># of relapses</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Average lead time</td>
<td></td>
<td>8.7 Months</td>
</tr>
<tr>
<td>Median lead time</td>
<td></td>
<td>10.1 Months</td>
</tr>
<tr>
<td>Maximum lead time</td>
<td></td>
<td>16.5 Months</td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>98%</td>
</tr>
</tbody>
</table>

Table 4: Study overview of Signatera in breast cancer

<table>
<thead>
<tr>
<th>Breast cancer stage</th>
<th>N</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtype (n)</td>
<td></td>
<td>HR+/HER2-=34, HER2+= 8, TNBC= 7</td>
</tr>
<tr>
<td>Prior treatment received</td>
<td></td>
<td>Adjuvant chemotherapy within 3 years of study entry</td>
</tr>
<tr>
<td># of blood time points</td>
<td></td>
<td>208</td>
</tr>
<tr>
<td>Average lead time</td>
<td></td>
<td>9.5 months</td>
</tr>
<tr>
<td>Median lead time</td>
<td></td>
<td>8.9 months</td>
</tr>
<tr>
<td>Maximum lead time</td>
<td></td>
<td>2 years</td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 5: Study overview of Signatera in muscle-invasive bladder cancer (MIBC)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior treatment received</td>
<td></td>
<td>Received neoadjuvant or first-line chemotherapy before cystectomy</td>
</tr>
<tr>
<td># of blood time points</td>
<td></td>
<td>656</td>
</tr>
<tr>
<td># of relapses</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Average lead time</td>
<td></td>
<td>2.8 Months</td>
</tr>
<tr>
<td>Median lead time</td>
<td></td>
<td>3.2 Months</td>
</tr>
<tr>
<td>Maximum lead time</td>
<td></td>
<td>8.2 Months</td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
Figure 3. Relapse-free survival of local or regionally advanced CRC patients, stratified by ctDNA status.
Detection of positive ctDNA after surgery and after adjuvant chemotherapy is associated with higher risk of relapse.
• Molecular relapse was detected at an average of 8.7 months before clinical relapse.

Figure 4. Relapse-free survival of local or regionally advanced breast cancer patients, stratified by ctDNA status.
Detection of positive ctDNA after surgery and after adjuvant chemotherapy is associated with higher risk of relapse.
• Molecular relapse was detected at an average of 9.5 months.

Figure 5. Relapse-free survival of MIBC patients, stratified by ctDNA status.
Significantly shorter relapse-free rates were observed for patient who are ctDNA-positive at diagnosis and post cystectomy.
• Molecular relapse was detected at an average of 2.8 months before clinical relapse.
Potential applications of Signatera in the clinical setting and in drug development

Unlike other ctDNA assays that are being developed for early cancer detection or as a tissue biopsy replacement for identifying actionable mutations in metastatic disease, applications of Signatera ctDNA analysis in the clinical setting could include predicting the likelihood of relapse at diagnosis, monitoring response to neoadjuvant treatment, detecting minimal residual disease, monitoring for recurrence after adjuvant treatment, or monitoring for treatment resistance (table 6, figure 6).

In drug development, ctDNA status determined by Signatera may potentially be used as an entry criterion for clinical trial enrollment. Enriching for patients based on ctDNA status, which correlates with the likelihood of relapse or treatment response, may have implications in decreasing sample sizes, shortening time to completion, minimizing total cost, and increasing the likelihood of trial success. Additionally, ctDNA detection at different time points during the trial may potentially complement Response Evaluation Criteria in Solid Tumors (RECIST) as a measurement of treatment response.

Table 6: Proposed applications of Signatera

<table>
<thead>
<tr>
<th>Applications</th>
<th>Signatera results</th>
<th>Implications</th>
<th>Trial designs</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular residual disease after surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctDNA-positive</td>
<td></td>
<td>Increased rate of relapse</td>
<td>Trials combining novel therapy and adjuvant therapy</td>
<td>Addition to SOC of anti-PD-1/PD-L1 vs placebo for NSCLC patients who are ctDNA-positive</td>
</tr>
<tr>
<td>ctDNA-negative</td>
<td></td>
<td>Decreased rate of relapse</td>
<td>Trials to avoid or de-escalate treatment</td>
<td></td>
</tr>
<tr>
<td>Recurrence monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctDNA-positive</td>
<td></td>
<td>Increased rate of relapse</td>
<td>Trials to increase surveillance during recurrence monitoring, showing correlation to outcomes</td>
<td>Imaging every 3 months vs 6 months in ctDNA-positive patients</td>
</tr>
<tr>
<td>Molecular relapse after adjuvant treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctDNA-positive without evidence of clinical relapse</td>
<td></td>
<td>>98% certainty for clinical relapse without additional therapy</td>
<td>Trials to treat with additional therapy prior to clinical relapse</td>
<td>Extending duration of adjuvant therapy in patients who are persistently ctDNA-positive after finishing standard course of treatment</td>
</tr>
<tr>
<td>Treatment monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctDNA levels increasing or unchanged</td>
<td></td>
<td>Increased rate of therapy failure</td>
<td>Trials to correlate ctDNA-negative status after treatment with decrease in RFS or improvement in PFS</td>
<td>cDNA to predict response to I-O therapy, distinguish pseudo-progression from true progression, and determine early trial readout</td>
</tr>
<tr>
<td>ctDNA levels decreasing or undetectable</td>
<td></td>
<td>Decreased rate of therapy failure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6: Applications of Signatera in detecting ctDNA

Figure 7: Potential clinical trial designs with Signatera

Trials to combine novel therapy with standard of care (SOC) adjuvant therapy for patients with high risk of clinical relapse

- Patients who are ctDNA-positive after curative surgery
 - Randomize
 - Adjuvant SOC + novel therapy
 - Adjuvant SOC + placebo
 - Endpoint: RFS

Trials to identify early-stage breast cancer patients with high risk of clinical relapse and treat with extended adjuvant therapy

- Patients who are ctDNA-positive after adjuvant therapy
 - Randomize
 - Extended adjuvant therapy
 - Observation only
 - Endpoint: RFS

Trials in metastatic cancer to correlate ctDNA-negative status after treatment with outcome

- Patients receiving treatment for metastatic cancer with increasing or unchanged ctDNA levels
 - Randomize
 - Continue SOC
 - Switch to new therapy
 - Endpoint: PFS
References

